Ribavirin suppresses bacterial virulence by targeting LysR-type transcriptional regulators

نویسندگان

  • Rahul Shubhra Mandal
  • Atri Ta
  • Ritam Sinha
  • Nagaraja Theeya
  • Anirban Ghosh
  • Mohsina Tasneem
  • Anirban Bhunia
  • Hemanta Koley
  • Santasabuj Das
چکیده

Targeting bacterial virulence mechanisms without compromising bacterial growth is a promising strategy to prevent drug resistance. LysR-type transcriptional regulators (LTTRs) possess structural conservation across bacterial species and regulate virulence in numerous pathogens, making them attractive targets for antimicrobial agents. We targeted AphB, a Vibrio cholerae LTTR, which regulates the expression of genes encoding cholera toxin and toxin-co-regulated pilus for inhibitor designing. Since AphB ligand is unknown, we followed a molecular fragment-based approach for ligand designing using FDA-approved drugs and subsequent screen to identify molecules that exhibited high-affinity binding to AphB ligand-binding pocket. Among the identified compounds, ribavirin, an anti-viral drug, antagonized AphB functions. Ribavirin perturbed Vibrio cholerae pathogenesis in animal models. The inhibitory effects of the drug was limited to the bacteria expressing wild type AphB, but not its constitutively active mutant (AphBN100E), which represents the ligand-bound state, suggesting that ribavirin binds to the active site of AphB to exert its inhibitory role and there exists no AphB-independent mechanism of its action. Similarly, ribavirin suppressed the functions of Salmonella Typhi LTTR Hrg, indicating its broad spectrum efficacy. Moreover, ribavirin did not affect the bacterial viability in culture. This study cites an example of drug repurposing for anti-infective therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins.

The LysR family of transcriptional regulators represents the most abundant type of transcriptional regulator in the prokaryotic kingdom. Members of this family have a conserved structure with an N-terminal DNA-binding helix-turn-helix motif and a C-terminal co-inducer-binding domain. Despite considerable conservation both structurally and functionally, LysR-type transcriptional regulators (LTTR...

متن کامل

Bacterial Effector Activates Jasmonate Signaling by Directly Targeting JAZ Transcriptional Repressors

Gram-negative bacterial pathogens deliver a variety of virulence proteins through the type III secretion system (T3SS) directly into the host cytoplasm. These type III secreted effectors (T3SEs) play an essential role in bacterial infection, mainly by targeting host immunity. However, the molecular basis of their functionalities remains largely enigmatic. Here, we show that the Pseudomonas syri...

متن کامل

The structure of CrgA from Neisseria meningitidis reveals a new octameric assembly state for LysR transcriptional regulators

LysR-type transcriptional regulators (LTTRs) form the largest family of bacterial regulators acting as both auto-repressors and activators of target promoters, controlling operons involved in a wide variety of cellular processes. The LTTR, CrgA, from the human pathogen Neisseria meningitidis, is upregulated during bacterial-host cell contact. Here, we report the crystal structures of both regul...

متن کامل

The Burkholderia cenocepacia LysR-type transcriptional regulator ShvR influences expression of quorum-sensing, protease, type II secretion, and afc genes.

Burkholderia cenocepacia is a significant opportunistic pathogen in individuals with cystic fibrosis. ShvR, a LysR-type transcriptional regulator, has previously been shown to influence colony morphology, biofilm formation, virulence in plant and animal infection models, and some quorum-sensing-dependent phenotypes. In the present study, it was shown that ShvR negatively regulates its own expre...

متن کامل

Two new Sinorhizobium meliloti LysR-type transcriptional regulators required for nodulation.

The establishment of an effective nitrogen-fixing symbiosis between Sinorhizobium meliloti and its legume host alfalfa (Medicago sativa) depends on the timely expression of nodulation genes that are controlled by LysR-type regulators. Ninety putative genes coding for LysR-type transcriptional regulators were identified in the recently sequenced S. meliloti genome. All 90 putative lysR genes wer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016